Natural language processing (NLP) is an area of computer science and artificial intelligence concerned with the interaction between computers and humans in natural language. The ultimate goal of NLP is to help computers understand language as well as we do. It is the driving force behind things like virtual assistants, speech recognition, sentiment analysis, automatic text summarization, machine translation and much more.
Data generated from conversations, declarations or even tweets are examples of unstructured data. Unstructured data doesn’t fit neatly into the traditional row and column structure of relational databases, and represent the vast majority of data available in the actual world Nowadays it is no longer about trying to interpret a text or speech based on its keywords (the old fashioned mechanical way), but about understanding the meaning behind those words (the cognitive way)
It is a discipline that focuses on the interaction between data science and human language, and is scaling to lots of industries. Today NLP is booming thanks to the huge improvements in the access to data and the increase in computational power, which are allowing practitioners to achieve meaningful results in areas like healthcare, media, finance and human resources, among others.
Use Cases of NLP
In simple terms, NLP represents the automatic handling of natural human language like speech or text, and although the concept itself is fascinating, the real value behind this technology comes from the use cases.
NLP can help you with lots of tasks and the fields of application just seem to increase on a daily basis. Let’s mention some examples:
- NLP enables the recognition and prediction of diseases based on electronic health records and patient’s own speech. This capability is being explored in health conditions that go from cardiovascular diseases to depression and even schizophrenia. For example, Amazon Comprehend Medical is a service that uses NLP to extract disease conditions, medications and treatment outcomes from patient notes, clinical trial reports and other electronic health records.
- Organizations can determine what customers are saying about a service or product by identifying and extracting information in sources like social media. This sentiment analysis can provide a lot of information about customers choices and their decision drivers.
- Companies like Yahoo and Google filter and classify your emails with NLP by analyzing text in emails that flow through their servers and stopping spam before they even enter your inbox.
- Amazon’s Alexa and Apple’s Siri are examples of intelligent voice driven interfaces that use NLP to respond to vocal prompts and do everything like find a particular shop, tell us the weather forecast, suggest the best route to the office or turn on the lights at home.
