The term ‘quantum chip,’ or ‘quantum processing unit,’ or ‘QPU’ refers to a physical (fabricated) chip that has several interconnected qubits, or quantum bits. A QPU serves as the basic building block of a complete quantum computer, which also consists of the control electronics, the QPU’s housing environment, and several other parts. A QPU enables a form of computation that’s built on quantum physics— nature’s operating system
How a QPU differs from a CPU
A quantum computer (with QPU) operates in a fundamentally different way from a classical computer. A bit’ in traditional computing (using a CPU) is a very small unit of binary data, which can be either a one or a zero. A processed bit is implemented by one of two levels of low DC voltage in traditional computer systems. The most recent variation of this concept is the ‘qubit,’ or quantum bit. Qubits use the phenomenon of superposition, which enables them to be in numerous states simultaneously, in contrast to binary bits, which can only be in either/or situations.
The capabilities of quantum computers surpass those of traditional computers, especially in terms of speed. A quantum computer can complete a task in two or three stages, whereas a classical computer needs thousands of steps to handle the same problem. Therefore, most quantum chips or QPUs are used as accelerators in heterogeneous multi-core computing devices. These can be connected with a classical processor (CPU) to provide a performance boost that cannot be achieved classically. The classical control circuitry and the quantum processing unit (QPU) are two of the most important components of hardware in quantum computing. Some of the subsystems of the QPU include registers and gates (sometimes called QRAM), a quantum control unit for driving the system states, and circuitry to interface between the classical host CPU and the QPU. However, there are various types of QPUs with variations in the subsystems as well as the underlying principles Quantum computers have the potential to revolutionize the field of computing, but they also come with a number of disadvantages. Some of the main challenges and limitations include noise and DE coherence, scalability, error correction, lack of robust quantum algorithms, high cost, and power consumption. A quantum computer isn’t a supercomputer that can do everything faster. In fact, one of the goals of quantum computing research is to study which problems can be solved by a quantum computer faster than a classical computer and how large the speedup can be. Quantum computers do exceptionally well with problems that require calculating a large number of possible combinations. These types of problems can be found in many areas, such as quantum simulation, cryptography, quantum machine learning, and search problems. As the global community of quantum researchers, scientists, engineers, and business leaders collaborate to advance the quantum ecosystem, we expect to see quantum impact accelerate across every industry.
